Social Icons

Showing posts with label LARGE LANGUAGE MODEL. Show all posts
Showing posts with label LARGE LANGUAGE MODEL. Show all posts

Thursday, January 11, 2024

What is Word2vec?

In the context of Large Language Models (LLMs), Word2Vec plays a crucial role as a foundational element for understanding and representing word meaning. Here's how it fits in:

Word2Vec

  • Is a technique for generating word embeddings, which are numerical representations of words capturing their semantic and syntactic relationships.
  • Learns these embeddings by analyzing a large corpus of text.
  • Uses two main architectures:
    • Continuous Bag-of-Words (CBOW): Predicts a target word based on surrounding context words.
    • Skip-gram: Predicts surrounding words given a target word.
  • By placing similar words close together in the embedding space, Word2Vec captures semantic relationships like "king" being closer to "queen" than "car."

Role in LLMs:

  • LLMs like GPT-3 and LaMDA rely heavily on word embeddings for several tasks:
    • Understanding the meaning of text: Embeddings help interpret the relationships between words in a sentence, providing the LLM with a nuanced understanding of the context.
    • Generating text: LLMs use word embeddings to predict the next word in a sequence, considering both its semantic similarity to previous words and its grammatical compatibility.
    • Performing complex tasks: LLMs trained on embeddings can accomplish tasks like question answering, summarization, and translation by leveraging the encoded word relationships.

Comparison to other LLM components:

While Word2Vec forms a starting point, LLMs employ more sophisticated architectures like Transformers. These models consider the order of words and context more effectively, leading to more fluent and accurate language generation and comprehension. Word2Vec can be seen as a building block upon which the more complex LLM structures are built.

Powered By Blogger